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A B S T R A C T   

Three surveys in the eastern Gulf of Mexico use baited remote underwater video systems to assess changes in 
abundance of reef fishes: the National Marine Fisheries Service (NMFS) Southeast Area and Monitoring and 
Assessment Program Reef Fish Video Survey, the NMFS Panama City (Florida) survey, and the Fish and Wildlife 
Research Institute of the Florida Fish and Wildlife Conservation Commission survey. These surveys use similar 
sampling gear and video-processing protocols, but they vary in spatial extent and habitats sampled. Each survey 
has been used individually to produce indices of relative abundance to assess various reef fish, but species trends 
may vary across surveys, possibly making subsequent assessment models more complex. A combined index could 
yield a more representative and statistically powerful characterization of the relative abundances of commer
cially important species. We developed a method for combining video count data from these surveys for managed 
reef-fish species into a combined index for the eastern Gulf using habitat data in classification and regression 
trees (CART) and general linear models (GLMs). CART results indicated that several site-specific and landscape- 
level habitat variables could be used to predict site occupancy of target species. We then used the CART-derived 
habitat groups as a variable shared among surveys in fitting a GLM to catch data to derive estimated annual 
abundances. We evaluated models’ potential and utility for a single estimated relative-abundance index for key 
managed reef species in the region compared to a suite of alternative GLMs of less complexity. Models that 
incorporated habitat covariates across the surveys showed better fits than models that did not incorporate habitat 
information. We also developed model-weighting methods that allowed us to account for the variation in spatial 
footprint in the surveys when combining data, allowing for what is likely a more representative index of regional 
relative abundance trends. Our results indicated that the data can be reliably combined into a single index. These 
methods should be evaluated for similar instances of combining survey data in other species, ecosystems, and 
management frameworks.   

1. Introduction 

Accurately modeling biomass using age-structured stock-assessment 
models in support of fishery management requires multiple data inputs, 
including both life-history and fishery-dependent (landings) data. Time 
series of fishery-dependent data, however, are often affected by regu
latory changes, market prices, and other socioeconomic factors (Roth
erham et al., 2007; de Mutsert et al., 2008), which can confound the 
relationship between trends observed in fishery-dependent data and 

trends in the true population. Instead, therefore, randomly sampled 
fishery-independent data are vital in characterizing and assessing pop
ulation trends in fish and are critical inputs to stock-assessment models 
(Walters and Martell, 2004). Best practices for regional stock assess
ments demand that, when possible, assessments should not use 
fishery-dependent data if reliable fishery-independent data are available 
for the same portion of the population (SEDAR, 2015a). 
Fishery-independent data are also significant sources of information on 
life history, length and age composition, and spatial structure for 
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managed species. 
Especially valuable is a time series of independently measured 

abundances for species of interest that are used in fitting assessment 
model–generated trends. Annual abundance is often estimated using 
generalized linear models (GLMs) that standardize catch and effort data 
over time to explain variation in catch rates that reflect changes in 
catchability rather than changes in population size. Explanatory vari
ables that reduce variability in catchability include environmental- 
habitat factors (Maunder and Punt, 2004; Xiao et al., 2004). 

Fishery-independent surveys frequently use random-stratified sam
pling to reflect variability more accurately in abundance by accounting 
for known sources of that variability (Walters and Martell, 2004). 
Variation that cannot be accounted for through stratification can often 
be explained using important habitat, spatial, environmental, and biotic 
covariates in a GLM used to predict annual abundances. These covariates 
can reduce an index’s coefficient of variation (CV), increasing in 
revealed trends the index’s precision and confidence. The value of 
fishery-independent indices to a stock-assessment model is a function of 
the length of the time series they are based on, the size selectivity of the 
survey or sampling gear used in gathering the data, the degree to which 
a survey has covered the spatial extent of the population, and the ability 
to reduce the CV around estimates by including important explanatory 
variables in a fitted model (Helser et al., 2004; Maunder and Punt, 
2004). If more than one survey examines the same species and ranges, 
combining them into one index rather than treating them independently 
stands to increase their value to stock assessment by better representing 
the overall population and by reducing the variation around annual 
abundance estimates (Gwinn et al., 2019). 

Three such surveys were considered in the present study, broadly 
targeting the reef-fish assemblage in the eastern Gulf of Mexico (east of 
87.5◦ W and north of 24.3◦ N, and herein referred to as eastern Gulf), 
and operating under three separate designs. As a result, the estimated 
index for a given species across these studies often had a large CV and 
assessment reviews questioned the appropriateness of combining the 
datasets. To improve our ability to assess these reef-fish species in the 
eastern Gulf, we developed a modeling and habitat-weighting scheme 
that allows the survey data to be combined and treated as representing a 
single survey, which potentially improves precision and confidence in 
assessments of managed reef-fish species. 

1.1. Background 

The eastern Gulf supports a diverse reef-fish assemblage, whose 
species have very different life histories and support different fishery 
user groups (de Mutsert et al., 2008; Geers et al., 2016; Karnauskas et al., 
2017). For this reason, the Gulf of Mexico Fishery Management Council 
(gulfcouncil.org) manages more than 30 reef species found throughout 
the expansive Gulf shelf. In support of resource management in the 
eastern Gulf, federal and state agencies developed surveys for tracking 
the abundance of those species (Grüss et al., 2018; Switzer et al., 2015). 
For example, the Southeast Area and Monitoring and Assessment Pro
gram (SEAMAP) developed its groundfish trawl survey to assess fish 
populations on sand, mud, and other low-relief habitat in the region and 
provide critical data on the subadult, pre-fishery life stage of many of the 
managed reef species (Pollack and Ingram, 2014; Switzer et al., 2015). 
However, assessing the adult, reef-associated stages of critical species 
requires sampling methods—such as visual methods—that can be used 
primarily in rugose, untrawlable habitats. 

For such habitats, stereo-baited remote underwater video (S-BRUV) 
arrays are highly effective in identifying and enumerating fish species 
associated with reef and rocky marine habitats (Whitmarsh et al., 2017). 
Because fish are not captured or retained, S-BRUV surveys exhibit 
generally less species and size-selectivity than do other capture gears 
typically used in the region (Christiansen et al., 2020). In addition, 
S-BRUVs can be deployed in waters deeper than those that can be 
visually surveyed by scuba divers (Willis and Babcock, 2000; Watson 
et al., 2005; Harvey et al., 2012; Keenan et al., 2018). 

Three research groups have established S-BRUV surveys in the 
eastern Gulf, but their survey domains vary spatially and they started in 
different years: 1) the National Marine Fisheries Service (NMFS) 
Southeast Fisheries Science Center SEAMAP Reef Fish Video Survey 
(SRFV), which began in 1992; 2) the NMFS Panama City (PC) video 
survey, which began in 2005; and 3) the Florida Fish and Wildlife 
Conservation Commission’s Fish and Wildlife Research Institute (FWRI) 
survey, which began in 2008. Despite their differences, the S-BRUV 
sampling gear, protocols, and derived abundance metrics can be directly 
compared because the groups have been careful to use identical stan
dardized deployment and video-annotation methods (Table 1, Fig. 1; 
Campbell et al., 2014, 2015; Devries et al., 2014; Gunther et al., 2014). 

Each of these surveys has submitted an independent index for the 
assessment of managed reef fishes through SEDAR (the SouthEast Data, 
Assessment, and Review program), usually beginning after 5 years of 
annual survey data have become available (sedarweb.org). At panel 
discussions at SEDAR stock-assessment workshops, participants noted 
that a combined index representing the eastern Gulf would provide a 
more accurate picture of reef-fish population trends and the greatest 
statistical power. Furthermore, a single index would reduce complica
tions when incorporating individual indices in stock-assessment models, 
which sometimes showed conflicting trends in similar segments of the 
population due to differing spatial coverage, particularly when the 
models could not account for spatial heterogeneity. Data from these 
surveys were first combined for the 2015 stock assessment of red 
grouper (Epinephelus morio). However, these efforts did not account for 
variability in the quality of habitat sampled by each survey and instead 
modeled only fixed-effect factors for space (three levels) and depth (two 
levels) (SEDAR, 2015b). 

Our objectives, therefore, were to improve upon initial efforts by 
developing a statistical approach to combining data from the three 
surveys that would account for variation among surveys, including dif
ferences in spatial footprint, habitats sampled, and site-selection pro
tocols. We aimed to incorporate important covariates into a GLM 
framework that would be familiar to most assessors and fishery man
agers and to weight the contribution of each data source into final 
abundance estimates as a function of the representative area sampled 
and of the habitat quality encountered in each survey. Final model- 
estimated relative-abundance trends would therefore better represent 

Table 1 
Summary of sample sizes (sites for which videos were read), by year, for the 
Florida Fish and Wildlife Research Institute (FWRI), SEAMAP Reef Fish Video 
(SRFV), and NMFS Panama City (PC) video surveys. No data were available or 
used (due to low sample sizes) from any survey from 1998 to 2001 or 2003.  

Year FWRI SRFV PC Total 

1993  115  115 
1994  90  90 
1995  61  61 
1996  133  133 
1997  162  162 
2002  152  152 
2004  148  148 
2005  274  274 
2006  276 70 346 
2007  318 44 362 
2008  206 85 291 
2009  262 99 361 
2010 145 221 143 509 
2011 221 335 156 712 
2012 237 281 150 668 
2013 184 164 94 442 
2014 286 230 153 669 
2015 224 152 143 519 
2016 194 206 168 568 
Total 1491 3786 1305 6582  
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overall regional population trends, simplify inputs in the assessment 
model, and carry less error than if each index were incorporated 
separately. 

2. Methods 

2.1. Description of the three surveys 

2.1.1. SEAMAP reef fish video 
The SRFV survey has been conducted on hard-bottom habitats of the 

U.S. Gulf since 1992 (Fig. 1). The annual survey is conducted between 
April and May and samples ~300 sites associated with high-relief reef 
habitat throughout the Gulf (1244 km2, eastern Gulf; 527 km2, western 
Gulf), primarily around the shelf break (target depth, 50–150 m). Sites 
are selected using a stratified random design; strata are determined by 
region (east and west of the Mississippi delta) and total proportion of 
reef area in a sampling block (10′ × 10′ latitude/longitude blocks). The 
SRFV survey was developed using habitat-mapping data (initially course 
data on bathymetry, but subsequently refined through the use of mul
tibeam sonar with ancillary use of side-scan sonar) to target reef habitat 

in each sampling block, but the research design does not explicitly 
apportion sampling across different reef types by using habitat-specific 
metrics (Campbell et al., 2014, 2015). Although this survey began in 
1992, data from 1992 were excluded because different video-annotation 
protocols were used. In addition, data from 1998 to 2001 and from 2003 
were excluded, as in earlier calculations of reef-fish indices because of 
various events in those years that limited sample sizes (Campbell et al., 
2014). For these analyses only the data from the eastern Gulf were used. 

2.1.2. Panama city 
The PC survey targets inner-shelf (in waters 7–60 m deep) reef 

habitats in the northeastern Gulf, from Pensacola, FL, to Cedar Key, FL. 
Survey design has changed since the survey began in 2005, but since 
2010 a stratified-random, unequal-probability design has been used. 
Blocks measure 5′ × 5′, and sites are randomly and proportionally 
allocated by region (east or west of Cape San Blas; Fig. 1) and depth 
(<20 m, 20–30 m, and 30–60 m). Sites are described using side-scan 
sonar before the S-BRUV gear is deployed, and reef habitats are classi
fied according to the Coastal and Marine Ecological Classification 
Standard (CMECS; Devries et al., 2014; Gardner and Overly, 2018). 

Fig. 1. Map of all video sites included in the index for each survey (by laboratory) across all years, 1993–2016. Cape San Blas, the geographic feature used in 
stratifying the PC survey is noted with a star. 
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Before field sampling, a scaled, composite score is calculated based 
on physical attributes of identified reefs (using relief, reef area, and 
rugosity) and the range of values is parsed into quantiles. The lower 
quantile is entered into the selection model once, the mid values three 
times, and the upper quantile five times. This allows the video site se
lection to process a greater chance of selecting higher-relief reefs 
without excluding any habitats from selection. Within each block, two 
sites are randomly selected with the minimum distance separating them 
being 250 m (Devries et al., 2014). 

Alternate sites are also selected for use when another boat is fishing 
the primary site or when sonar reveals no hard bottom there. Two 
hundred sites are selected for sampling each year, with the number of 
samples varying in a year because of a variety of environmental and 
personnel factors (Table 1). 

2.1.3. Fish and Wildlife Research Institute, Florida Fish and Wildlife 
Conservation Commission 

The FWRI survey targets shelf and shelf-break reef habitats on the 
central West Florida Shelf off Tampa Bay and Charlotte Harbor. It uses a 
stratified-random survey design for mapping where 200 sites of annual 
effort are proportionally allocated among spatial strata for NMFS sta
tistical zones 4 and 5 (offshore of Tampa Bay and Charlotte Harbor 
areas) with 100 side-scan mapping sites in each (Fig. 1). Sites are further 
stratified by depth with a nearshore (10–36 m) and an offshore 
(37–110 m) stratum. Before the S-BRUV gear is deployed, sites are 
mapped using side-scan sonar (Keenan et al., 2018), and geoforms are 
delineated and classified using the CMECS standard. Video deployment 
sites are then randomly selected from sites shown by side-scan sonar to 
include reef habitat (Keenan et al., 2018; Thompson et al., 2018). 

2.2. Video annotation protocols 

For all three surveys, abundance of all managed reef fishes identified 
is estimated as the maximum number of individuals observed in a single 
video frame (recorded as MaxN) during 20 min of video (Campbell et al., 
2015). Procedures for identifying, counting, and describing habitat in 
the videos are the same in all three surveys. Various habitat metrics, 

including composition of substrate, biota, and vertical relief, are also 
quantified for each video processed. These variables include the pres
ence and percent cover of rock, sand, sponges, soft coral, hard coral, 
algae, and unidentifiable sessile organisms, as well as the estimated 
maximum vertical relief. Videos were excluded from subsequent ana
lyses if the water at a site was highly turbid or if deployment errors were 
noted (e.g., the camera pod fell on its side; the video recording time was 
short). 

2.3. Test species 

We explored the utility of various approaches to combining data 
from all three surveys for four species of management interest that had 
been assessed as being overfished or as having been overfished during 
the previous decade (SEDAR, 2013, 2014, 2015b, 2015c) and that vary 
with respect to life history, center of distribution, and recent population 
trajectories. Red snapper (Lutjanus campechanus) is a schooling species 
that has undergone significant changes in regulation in recent decades 
and may be recovering in the eastern Gulf (SEDAR, 2018). Red grouper 
is a protogynous hermaphroditic species that is widely distributed and 
generally abundant but that has been declining in recent years (SEDAR, 
2015b). Gray triggerfish (Balistes capriscus) is widely distributed 
throughout the Gulf, especially in inner-shelf habitats (SEDAR, 2015c). 
Gag (Mycteroperca microlepis) is a protogynous hermaphroditic species 
that is much less abundant than the other test species throughout the 
eastern Gulf (Lindberg et al., 2013; SEDAR, 2014). 

2.4. Survey-specific habitat models 

Populations are often hyperstable at locations with high-quality 
habitat, such that population trends at sites of low to moderate habitat 
quality may be better indicators of overall population status (MacCall, 
1990; Lindberg et al., 2013). Therefore, survey-generated indices of 
abundance for assessments should, when possible, account for habitat 
variability and quality. We developed combined-index models to ac
count for random interannual variability in the quality of habitat 
sampled by each survey and to more fully capture the variation in 

Fig. 2. Example of variable importance ranking before fitting the final CART habitat model for red snapper with the FWRI data.  

K.A. Thompson et al.                                                                                                                                                                                                                           
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population trends across the eastern Gulf. Factors that define habitat 
quality vary widely among species, and, among the three surveys, 
habitat variables available to define habitat quality differ due to map
ping methodology. Therefore, as a first step, we conducted a series of 
analyses to define a common habitat quality metric that ranked habitat 
as fair, good, or poor (herein, FGP habitat classes) for each species and 
each survey that will be used in index models. To accomplish this, we 
used a classification and regression tree (CART), a tool that has proved 
useful in fisheries ecology and in describing fish–habitat associations 
(De’ath and Fabricius, 2000; Yates et al., 2016). The CART was espe
cially useful in the present study because it can include both continuous 
and categorical data while still being able to account for collinearity 
among variables (De’ath and Fabricius, 2000). The CART models 
described here were applied independently for each species–survey 
combination for a total of 12 habitat models. 

For each CART analysis, the response variable was the presence or 
absence of the species of interest (present defined as MaxN > 0); spatial 
predictor variables were the latitude, longitude, and water depth at each 
sampling location. Month was included as a possible temporal variable. 
We also used presence of different habitat categories (e.g., rock, hard 
coral, sponge; see video methods, above). For analyses of FWRI and PC 
survey data, habitat type, as determined from side-scan sonar (geoform; 
see Keenan et al., 2018), was also included as a landscape-scale habitat 
variable; no comparable metric was available for SRFV survey data. 

Because multiple combinations of physical and habitat variables are 
possible, we first performed a random-forest analysis to reduce the 
number of candidate variables included in the final CART fitting used to 
define index variables. Random-forest analyses were conducted sepa
rately for each survey, using its full data set. They involved fitting 2000 
CART models using randomly selected subsets of five variables. A 
measure of the importance of a variable in predicting that a species 
would be present was calculated as a scaleless number based on the 
number of final models that contained the variable after selection 
(Fig. 2; Appendices A1–A11; Hothorn et al., 2006). 

Based on these results, for each survey, the top 50% of the variables 
were retained for possible inclusion in a final CART model based on 

variable importance. These variables were used to differentiate habitat 
quality in each survey and allowed for more efficient model fitting 
without excluding those variables likely to contribute to a final model. 
The final models that predicted presence for each species and survey 
were created using training data sets consisting of a randomly selected 
80% of the data. The remaining 20% of the data were used to test the 
final model and determine misclassification rates. The proportion of 
sites with positive catches (MaxN > 0) at each terminal node given by 
the variable criteria was then evaluated to determine whether the 
described habitat could be characterized as good (occupancy at more 
than twice the overall proportion positive of the full data set), fair (one- 
half to twice the overall proportion positive for the full data set), or poor 
habitat (less than half the overall proportion positive of the full data set; 
see example in Fig. 3). 

Conducting analyses for each survey and species resulted in 12 final 
habitat models. An example with the FWRI red snapper data is shown in 
Fig. 3. All analyses were conducted using R version 3.0.2 (R Core Team, 
2008) and the Party package (Hothorn et al., 2006). 

2.5. Combined index models 

Because relative abundance (MaxN) does not conform to assump
tions of normality, we used a negative-binomial GLM and confirmed that 
a zero-inflated version of the model was not appropriate given the lack 
of overdispersion (dispersion estimates ranged from 1.01 to 1.06 across 
species). We then explored a series of models to test the improvement in 
model fit gained by including survey and newly defined habitat vari
ables. The first model represented a nominal, or year-only, index (MaxN 
= Y). This model is frequently included when presenting indices for 
assessment to illustrate how annual trends compare with trends gener
ated from model-based estimates that account for habitat, spatial, or 
other important variables (SEDAR, 2015b). The second model included 
survey in addition to year (MaxN = Y*Survey) and accounts for vari
ability in survey-specific sampling effects from year to year. The third 
model dropped the survey effect but included the site-specific habitat 
quality variable (Hab; FGP) defined from the CARTs (MaxN = Y*Hab) to 

Fig. 3. Example of a final CART model for red snapper for FWRI data. Nodes indicate the proportion of sites given by criteria that had at least one red snapper 
present. Sample size of video sites that met the criteria are shown above the bar graph. Overall presence of red snapper for this survey was 0.15, indicated by the 
dashed line. Habitat distinctions (fair, F; good, G; poor, P) are indicated for each node based on proportion present. 
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determine whether these habitat classes improved model performance 
beyond just the year effect. The fourth and most complex model 
included the habitat quality variable in addition to year and survey 
(MaxN = Y*Survey*Hab). 

We hypothesized that the model accounting for both survey and 
habitat variability would represent the best model of population trends 
for the eastern Gulf. Therefore, for this model we also tested a method 
for generating combined annual estimates of relative abundance that 
weighted survey-level estimates by the estimated quantity of habitat 
contained within each habitat class for each survey area. To define these 
weights, we first determined for each survey the proportion of sampling 
units mapped over its duration that contained reef habitat. This pro
portion was then multiplied by the spatial extent of each survey to es
timate the total area of reef habitat contained within each survey area. It 
is these proportions that were used to weight each survey’s contribution 
to final model annual abundance estimates. At the survey level, the 
FWRI survey covered the greatest aerial extent, followed by the SRFV 
and PC surveys (Table 2). In terms of the proportion of mapped sampling 
units with reef habitat, however, a markedly greater number of sampling 
units contained reef habitat in the SRFV (81%) and PC (67%) surveys 
than in the FWRI survey (29%). Based on these values, we estimated that 
52% of sampling units containing reef fell within the SRFV survey 
domain, 28% fell within the PC survey domain, and 20% fell within the 
FWRI survey domain. Accordingly, these percentages were used to 
define survey-specific weighting factors (Table 2). These differences in 
percentage of reef sampling units are the result of differing mapping 
methods and levels of randomization and how they are included or 
excluded in research design. 

Survey-specific weighting factors were then apportioned among 
habitat categories based on the proportion of samples that fell within 
each habitat category; because habitat-quality designations varied with 

species, proportioning the survey weights among habitat categories was 
also species-specific. This yielded a data set of weighting values for each 
combination of survey, habitat category, and year for each species 
modeled. These values were multiplied to adjust the model-estimated 
means and confidence intervals generating a weighted index model es
timate of abundance. 

Ultimately, we fit five GLM formulations for each of the four species 
for a total of 20 index models. All models were fit using the PROC 
GLIMMIX procedure in the SAS Enterprise Guide (version 7.1, © 2017), 
and the weighting was achieved using its LS MEANS statement. 

Results from the five models were compared using standard model- 
selection metrics, including AIC and BIC. We also evaluated model 
CVs, calculated as the standard error divided by the estimated mean, 
which are often used to weight the contribution of index models to stock 
assessment (Campbell, 2004; Walsh and Brodziak, 2015). Population 
trends derived from the four model formulations were also plotted to 
elucidate how different model-generation and weighting protocols 
might influence interannual trends in relative abundance. While 
modeling of independent survey data is conducted to account for vari
ation in sampling that would be missed if using nominal, or year only 

Table 2 
Area weighting values for each survey by area and proportion of mapped grids with reef habitat. Final area weighting values are shown for the three time periods.  

Survey Total universe 
area (km2) 

Total mapped 
area (km2) 

Proportion of grids 
with habitat 

Total universe area 
× proportion grids with 
habitat (km2) 

Area weighting 
values (1993–2005) 

Area weighting 
values (2006–2009) 

Area weighting 
values (2010–2017) 

SRFV 34,490 11,194  0.81 27,936.9  1.0  0.65  0.52 
PC 22,104 356  0.67 14,860.9  0.0  0.35  0.28 
FWRI 37,290 1379  0.29 10,814.1  0.0  0.00  0.20  

Table 3 
Proportion of sites, by survey, where each species was observed (MaxN>0).   

Overall proportion present 

Species SRFV PC FWRI 
Red snapper 0.16 0.42 0.15 
Red grouper 0.27 0.38 0.40 
Gray triggerfish 0.15 0.45 0.13 
Gag 0.07 0.23 0.03  

Table 4 
Variables chosen in CART model that predicted the presence of reef fish at a site. Variables are spatial, landscape habitat (geoform), or video-coded habitats. These 
variables and their associated thresholds were then used to determine FGP (i.e., fair, good, or poor) habitats for subsequent index fitting. Final CART model 
misclassification rates using a 20% subset of retained data are shown for each species.   

Variables in final habitat CART model 
Species SRFV PC FWRI 
Red snapper Soft coral, longitude, hard coral, shell, latitude Longitude, depth, algae Depth, longitude, algae, relief 
Red grouper Hard coral, depth, relief, longitude, sessile organisms Rock, geoform, depth, latitude Sponge, relief, rock 
Gray triggerfish Seagrass, hard coral, latitude, longitude, relief Relief, latitude, longitude, geoform, depth Geoform, relief 
Gag Soft coral, latitude, longitude, relief, hard coral Geoform, depth, rock Relief, depth  

Misclassification rate 
Species SRFV PC FWRI 
Red snapper 0.14 0.27 0.16 
Red grouper 0.24 0.34 0.33 
Gray triggerfish 0.17 0.33 0.11 
Gag 0.09 0.20 0.04  

Table 5 
Proportion of sites in each habitat category for each species and laboratory, as 
determined by CART models.   

SRFV 

Species F G P 
Red snapper 0.498 0.334 0.168 
Red grouper 0.405 0.287 0.307 
Gray triggerfish 0.303 0.111 0.586 
Gag 0.427 0.184 0.389  

PC  
F G P 

Red snapper 0.331 0.467 0.202 
Red grouper 0.783 0.014 0.203 
Gray triggerfish 0.821 0.000 0.179 
Gag 0.648 0.116 0.236  

FWRI  
F G P 

Red snapper 0.264 0.290 0.447 
Red grouper 0.537 0.051 0.412 
Gray triggerfish 0.936 0.064 0.000 
Gag 0.000 0.176 0.824  
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averages of abundance, fitted models are often evaluated against nom
inal annual trends to identify large, unexplained deviations that may be 
indicative of potential model fit issues. When comparing final popula
tion trends among models for each species, they were first adjusted to 
the overall model mean to standardize the values to 1 (i.e., estimated 
MaxN was converted to relative MaxN, as such results are typically 
presented) and then used in fitting assessment models. 

3. Results 

3.1. Species presence in each survey 

The proportion of videos in which species of interest were observed 
varied markedly between species and surveys (Table 3). Red grouper 
were commonly observed in all surveys, with a proportion positive 
ranging from 20% to 40%, whereas gag was the least commonly 
observed species in all surveys (<10% for SRFV and FWRI, <25% for 
PC). For all species other than red grouper, the Panama City (PC) survey 
led to the highest positive observations of all three surveys (Table 3). 

3.2. Survey-specific habitat models 

Twelve CART models were fitted, and the resultant nodes were used 
to define habitat quality (FGP) for index development. Two to 6 vari
ables were retained in the final CART models; overall, variables retained 
varied by species and survey, although some consistencies were 
observed (Table 4; individual CARTs can be seen in B.1–B.11). Within 
each survey, at least one variable was retained across all species-specific 
analyses, suggesting a consistent cofactor in the survey. For the SRFV 
survey it was the presence of hard coral and longitude, for the PC survey 
it was depth, and for the FWRI survey it was the presence of relief taller 
than 0.1 m. Similarly, certain variables were consistently retained across 
surveys for a species; for red snapper, longitude was retained for all 
three surveys, whereas for gray triggerfish, it was the presence of relief 
taller than 0.1 m. No similar consistencies were evident for either red 
grouper or gag. Other variables retained for species- and survey-specific 
analyses included latitude, side-scan-derived geoform, and the presence 
of soft corals, shell, rock, algae, sponge, and sessile organisms (Table 4). 
Overall, CART models performed well in predicting the presence of each 
species; misclassification rates ranged from 4% to 34%. Misclassification 
rates were generally highest for species and survey combinations with 
the highest proportion present, notably red grouper (PC and FWRI) and 
gray triggerfish (PC); in contrast, misclassification rates were lowest for 
gag, the rarest of the species (Table 4). But these values were calculated 
at the level of individual node assignments rather than at the defined 

FGP habitat class, so misclassification values at the functional scale for 
this index were even lower. 

Results from CART-derived proportions of habitat quality were in
tegrated with estimates of reef coverage for each respective survey to 
define species-specific weighting factors. The distribution of FGP habitat 
classes varied markedly among surveys and species (Table 5). Overall, 
the fair habitat class accounted for the greatest proportion of habitat- 
quality classes for most species and survey combinations, especially 
for the PC survey. In contrast, the poor habitat class was the most often 
sampled habitat class for gray triggerfish in the SRFV survey and for red 
snapper and gag in the FWRI survey. Aside from gray triggerfish in the 
PC survey (for which no habitats were characterized as good) and gray 
triggerfish (for which no habitats were characterized as poor) and gag 
(for which no habitats were characterized as fair) in the FWRI survey, all 
other species and survey combinations contained all three habitats. 

3.3. Combined index models 

All five index models (Year, Year*Survey, Year*Hab, Unweighted 
Year*Survey*Hab, and Weighted Year*Survey*Hab) were fit successfully for 
all four species examined (Table 6). Although CV increased slightly, AIC 
and BIC values declined with the addition of explanatory variables beyond 
just the nominal or year only model. Of the two factor models, the Year*Hab 
model performed better than the Year*Survey model in terms of AIC and 
BIC. However, the lowest CVs of the two models varied by species (Table 6). 
Across all species, the lowest AIC and BIC values were for the full 
Year*Survey*Hab model. The application of survey- and habitat-specific 
weighting factors resulted in lower CVs than in the unweighted habitat 
model, and generally the lowest CVs of all models fit across species, except 
in gag. Accordingly, it appears that in general the best-fitting model was the 
one that included year, survey, and habitat, whereby annual estimates were 
the weighted averages of the survey and habitat means (Table 6). 

Indices produced by the five model formulations captured similar 
trends in relative abundance for all four species, but models differed 
somewhat in patterns through time (Fig. 4). In general, the weighted full 
model followed the pattern of the nominal, year-only model, with de
viations resulting from how additional factors account for sampling 
variation resulting in an overall improved fit to the data. The 
Year*Survey and Year*Survey*Hab unweighted models deviated in 
annual trends more strongly from the other two models (Fig. 4). Further, 
a comparison of the unweighted models to the weighted models shows 
that including the weighting factors is important. This might imply that 
the surveys are not consistent enough over time with the sampling of the 
habitats due to site selection, randomness, or some unmeasured 
properties. 

Table 6 
Akaike’s information criterion (AIC), Bayesian information criterion (BIC) and overall coefficient of variation (CV) comparison of naïve models (year only and 
year*survey only) to a model with habitat class included when all three data sets were aggregated. Both AIC and BIC are the same for the full model whether weighted 
or unweighted, but CV varies. Weighted indices were not calculated for the null models, so there are no weighted CVs.  

Species  Year Y * Survey Y*Hab Y*Survey*Hab 

Red Snapper AIC 13,442.91 12,985.37 12,576.81  12,022.3 
BIC 13,578.75 13,243.47 12,970.75  12,783.01 
CV(unweighted) 0.278 0.279 0.278  0.281 
CV(weighted) – – –  0.269 

Red Grouper AIC 11,173.28 10,917.39 10,504.36  9984.76 
BIC 11,301.99 11,168.04 10,898.31  10,696.08 
CV(unweighted) 0.111 0.114 0.121  0.161 
CV(weighted) – – –  0.103 

Gray Triggerfish AIC 10,281.28 9592.83 9507.71  8918.44 
BIC 10,417.12 9850.93 9901.65  9556.89 
CV(unweighted) 0.165 0.166 0.232  0.189 
CV(weighted) – – –  0.164 

Gag AIC 5812.28 5426.17 5294.45  4962.93 
BIC 5948.13 5684.27 5688.39  5662.52 
CV(unweighted) 0.308 0.309 0.365  0.372 
CV(weighted) – – –  0.312  
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4. Discussion 

In this paper, we demonstrated a new method of integrating into one 
index abundance data obtained from multiple surveys that varied in 
space, habitat, and time frame. By including habitat type and quality, we 
were able to account for important sources of variation in reef-fish 
abundance estimates for each survey. We devised a weighting scheme 
that balanced differences among the surveys stemming from the sam
pling of different areas that nevertheless overlapped ecologically to 
some degree. Overall, trends in the indices generated did not differ 
markedly from those observed in the nominal count data. The 
combined-habitat weighted model, however, improved overall index 
performance and more appropriately accounted for interannual varia
tion in the habitat sampled in each survey (e.g., reduced CVs). To our 
knowledge, this is the first attempt 1) to integrate results from CART and 
GLM models as a means of combining data from multiple surveys using 
the same type of gear and 2) to explicitly account for variability in 
habitats sampled through time. Applying these methods will improve 
the quality of fishery-independent data used in reef-fish stock assess
ments for the eastern Gulf of Mexico; will simplify subsequent assess
ment models; and could offer still broader application to surveys or 
systems for which the quality of sampled habitats varies with site se
lection or survey design. 

Hierarchical analysis and dynamic factor analysis have proved useful 
in combining separately modeled trends using regional fisheries data 
(Conn, 2010; Peterson et al., 2017). Yet those methods do not allow for 
survey-specific weighting using a priori information, such as habitat 
quality, which we incorporated into our analyses. Furthermore, the data 
sets we used overlapped in region and were collected using the same 
type of gear, so they do not require that individual index models be 
evaluated. Rather, incorporating habitat as a standard metric in a single 
weighted model allows consideration of variability among surveys while 

fitting a single population trend for assessments. This is straightforward 
and is familiar to assessment reviewers because it is similar to the use of 
standard index methods. Our results also showed that fit is improved 
when habitat is incorporated as an explanatory factor in addition to 
survey and year, as compared to a suite of simpler models (Table 6). 

Results from CART analyses indicate that, for managed reef fishes in 
the eastern Gulf, both site-level habitat and landscape-level metrics were 
important predictors of species-specific occupancy rates. Given that 
these key variables are both categorical and continuous and may be 
colinear, the CART methodology offers a straightforward method for 
predicting the presence of reef fish at a site (De’ath and Fabricius, 2000). 
Furthermore, this method detected thresholds or breaks in the habitat 
variables used, providing a straightforward way of interpreting the 
critical habitat interactions for these species. Earlier research regarding 
fishery-independent indices and general fish ecology has demonstrated 
the importance of habitat to population dynamics (Maunder and Punt, 
2004). For reef fish, the influence of complex bathymetry and biogenic 
habitats has been noted in several ecosystems, because they indicate 
both structure and forage base (Lindberg et al., 2013; Campbell et al., 
2015; Keenan et al., 2018; Switzer et al., 2020). We saw a similar 
pattern, with the presence of the reef fish studied being predicted by 
both landscape-level variables (i.e., geoform) as well as site-specific 
features such as rock, sponge, extent of relief, and sediment type 
(Table 4). Geoform data were available only for the PC and FWRI sur
veys; as such, the CART method developed in the present study allowed 
for the inclusion of this highly-informative metric. Landscape-scale ef
fects of habitat are likely evident in the SRFV data; however, these ef
fects largely remain unknown. Ultimately, analyses would be greatly 
improved through efforts to cross-validate multibeam sonar data against 
the FWRI and PC geoforms generated from side scan sonar data, but this 
has been difficult to achieve because the habitat-mapping methods have 
differed in resolution. Future standardization among surveys will 

Fig. 4. Abundance trends generated for all species and models. Confidence limit (LCL, UCL) are shown for the final, weighted index. Note that the y-axes differ 
between top and bottom plots. 
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require efforts towards integration of side-scan- and 
multibeam-determined habitat types. 

The results of our analyses and the subsequent ability to appropri
ately combine and weight the three data sets illustrate a reliable method 
that solves data concerns regarding the assessment and management of 
reef fish in the eastern Gulf (e.g., lack of complete shelf spatial coverage 
in the individual surveys). While the three data sets have been available 
for at least several years, regional assessments have often incorporated 
only the SRFV survey because it is the longest time series and due to 
uncertainty as to the best practices for combining the data. Furthermore, 
the use of three individual indices, which may detect different trends, 
risked diluting the ability of the assessment model to fit to fishery- 
independent data. This was a point of discussion in earlier assessments 
by the science and statistical committee of the Gulf of Mexico Fisheries 
Management Council. Our method allows us to provide the largest 
possible data set for these key species at the broadest geographical scale 
possible, collected using a type of gear that offers selectivity not 
matched in breadth by the other available independent data sets for the 
region (Christiansen et al., 2020). These methods have been presented, 
reviewed by fishery-assessment panels, and, for several reef species, 
incorporated into SEDAR models (Thompson et al., 2017, 2018, 2019). 

Although the analytical approach developed in the current study 
proved effective in combining data from multiple surveys into a single 
population index, the utility of and confidence in these methods could be 
improved upon through several future considerations. Overall, the 
CART method performed well in handling the complex habitat data 
available, and the shared habitat variables generated through CART 
analyses universally improved model fits. However, there were several 
instances where, for a particular combination of survey and species, the 
model was unable to differentiate all three habitat levels. It is unclear 
whether these instances resulted from inherent properties of the design 
of specific surveys, or perhaps habitat preferences or general sparseness 
of available data for a particular species. As this time series matures and 
additional data become available it is possible that species-habitat re
lationships will become better defined and these issues will resolve 
themselves. Regardless, we suggest that results from future analyses for 
these species be critically reviewed to ensure that any changes evident in 
CART results to not have unexpected consequences to final index results. 
Another important consideration when combining data among surveys 
is how to appropriately account for variability in size composition. 
Often, size composition from multiple data sources is accomplished 
through the fitting of multinomial models (Walter et al., 2020), although 
survey weighting approaches have also been used (Thompson et al., 
2020). Future efforts should focus on evaluating whether the survey and 
habitat weighting protocols developed in the present study can be 
extended to combine size-composition data, and how these results 
compare to more traditional methods. 

While our primary objective in developing this method was to 
streamline fishery-independent data inputs for reef-fish stock assess
ments, the resultant indices of abundance have applicability that ex
tends well beyond stock assessment. The eastern Gulf supports a range of 
species with unique life histories that support diverse commercial and 
recreational fisheries in several states. Furthermore, environmental 
phenomena, such as red tides, hurricanes, emergences of invasive spe
cies such as lionfish (Pterois spp.), and population responses to habitat 
changes should be considered in evaluations of fishery dynamics and 
management. Given this faunal and environmental diversity, data sets 
combining geographic and habitat data for all the eastern Gulf can 
provide greater insight into population-level status and distribution than 
can individual, smaller-scale surveys, which can exhibit localized trends 
that can differ markedly from those evident at the regional level (Nye 
et al., 2010). 

Our methodology can also be applied to other regions, systems, and 
ecological questions. Compared with many fishery surveys, we are data 
rich, given our large sample sizes, extensive mapping, and detailed video 
descriptions of habitat for several key managed species. Given the 

importance of evaluating habitat metrics, these methods are most 
appropriately applied to surveys that can characterize sites beyond 
location and depth. Also, this method is limited to variation in survey 
spatial footprint and time series and does not consider differences in 
selectivity among gear types. Future work with this method will include 
linking survey sites between artificial and natural reefs, as artificial reefs 
have recently begun to be sampled in these surveys and are of regional 
interest because they may be key to the abundance of fishery species, but 
because these habitats have existed in the region for only a relatively 
short time, they have not been addressed here. 

Though helpful, the indices developed here and their value to stock 
assessments and ecological insight can be improved further with a truly 
singular, appropriately stratified-random design. Work has begun to 
integrate such dimensions into survey designs, thereby more thoroughly 
and more consistently sampling the eastern Gulf. These efforts will 
contribute to our goal of using fishery-independent data to determine 
population trends in the region and to address newly emerging ecolog
ical questions regarding reef-fish species. 
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Appendix A 

See Appendix Fig. A1. – A11. 

Fig. A1. Variable-importance ranking from random forest analysis before fitting the final CART habitat model for red snapper with PC data.  

Fig. A2. Variable-importance ranking from random forest analysis before fitting the final CART habitat model for red snapper with SRFV data.  
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Fig. A3. Variable-importance ranking from random forest analysis before fitting the final CART habitat model for red grouper with FWRI data.  

Fig. A4. Variable-importance ranking from random forest analysis before fitting the final CART habitat model for red grouper with PC data.  
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Fig. A5. Variable-importance ranking from random forest analysis before fitting the final CART habitat model for red grouper with SRFV data.  

Fig. A6. Variable-importance ranking from random forest analysis before fitting the final CART habitat model for gray triggerfish with FWRI data.  
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Fig. A7. Variable-importance ranking from random forest analysis before fitting the final CART habitat model for gray triggerfish with PC data.  

Fig. A8. Variable-importance ranking from random forest analysis before fitting the final CART habitat model for gray triggerfish with SRFV data.  
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Fig. A9. Variable-importance ranking from random forest analysis before fitting the final CART habitat model for gag with FWRI data.  

Fig. A10. Variable-importance ranking from random forest analysis before fitting the final CART habitat model for gag with PC data.  
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Appendix B 

See Appendix Fig. B1. – B11. 

Fig. A11. Variable-importance ranking from random forest analysis before fitting the final CART habitat model for gag with SRFV data.  

Fig. B1. Final CART model for red snapper for PC data. Nodes indicate the proportion of sites given by criteria that had at least one red snapper present. Sample size 
of video sites that met the criteria are shown above the bar graph. 
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Fig. B2. Final CART model for red snapper for SRFV data. Nodes indicate the proportion of sites given by criteria that had at least one red snapper present. Sample 
size of video sites that met the criteria are shown above the bar graph. 

Fig. B3. Final CART model for red grouper for FWRI data. Nodes indicate the proportion of sites given by criteria that had at least one red grouper present. Sample 
size of video sites that met the criteria are shown above the bar graph. 
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Fig. B4. Final CART model for red grouper for PC data. Nodes indicate the proportion of sites given by criteria that had at least one red grouper present. Sample size 
of video sites that met the criteria are shown above the bar graph. 

Fig. B5. Final CART model for red grouper for SRFV data. Nodes indicate the proportion of sites given by criteria that had at least one red grouper present. Sample 
size of video sites that met the criteria are shown above the bar graph. 
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Fig. B6. Final CART model for gray triggerfish for FWRI data. Nodes indicate the proportion of sites given by criteria that had at least one gray triggerfish present. 
Sample size of video sites that met the criteria are shown above the bar graph. 

Fig. B7. Final CART model for gray triggerfish for PC data. Nodes indicate the proportion of sites given by criteria that had at least one gray triggerfish present. 
Sample size of video sites that met the criteria are shown above the bar graph. 
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Fig. B8. Final CART model for gray triggerfish for SRFV data. Nodes indicate the proportion of sites given by criteria that had at least one gray triggerfish present. 
Sample size of video sites that met the criteria are shown above the bar graph. 

Fig. B9. Final CART model for gag for FWRI data. Nodes indicate the proportion of sites given by criteria that had at least one gag present. Sample size of video sites 
that met the criteria are shown above the bar graph. 
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